Thermal conductivity of nanoporous silicon: Molecular dynamics simulations and machine learning prediction
DOI (Low Temperature Physics):
https://doi.org/10.1063/10.0042162Ключові слова:
nanoporous silicon, thermal conductivity, molecular dynamics, symbolic regression, machine learningАнотація
Досліджено теплопровідність нанопористого кремнію (p-Si) із застосуванням методів рівноважної молекулярної динаміки та машинного навчання. Проаналізовано ефективність використання різних міжатомних потенціалів у молекулярно-динамічних розрахунках і обґрунтовано вибір потенціалу Tersoff завдяки його стабільності та точності. Значення теплопровідності p-Si обчислено в широкому діапазоні температур і пористостей. За допомогою алгоритму символьної регресії отримано аналітичний вираз, який описує залежність теплопровідності від температури та пористості. Показано, що моделі випадкового лісу та градієнтного бустингу, натреновані для реконструкції автокореляційних функцій теплового потоку та прогнозування теплопровідності, забезпечують вищу точність порівняно з моделями, побудованими на основі методу опорних векторів. Запропонований комбінований підхід забезпечує точне й ефективне прогнозування теплового транспорту в пористих наноструктурах і сприяє розробленню матеріалів для систем теплового менеджементу та енергетичних застосувань.
Посилання
S. Chatterjee, Hu. H. Paras, and M. A. Chakraborty, “Review of nano and microscale heat transfer: An experimental and molecular dynamics perspective,” Processes 11, 2769 (2023).https://doi.org/10.3390/pr11092769
A. Zacharias, R. Baby, H. J. Maria, and S. Thomas, “Preparation, characterization, and selection of nano-assisted phase change materials for thermal management and storage applications,” Renew. Sustain. Energy Rev. 210, 115195 (2025).https://doi.org/10.1016/j.rser.2024.115195
V. Lacatena, M. Haras, J.-F. Robillard, S. Monfray, T. Skotnicki, and E. Dubois, “Phononic engineering of silicon using “dots on the fly” e-beam lithography and plasma etching,” Microelectron. Eng. 121, 131 (2014).https://doi.org/10.1016/j.mee.2014.04.034
S. Xie, H. Zhu, X. Zhang, and H. Wang, “A brief review on the recent development of phonon engineering and manipulation at nanoscales,” Int. J. Extrem. Manuf. 6, 012007 (2024).
V. Kuryliuk, O. Tyvonovych, and S. Semchuk, “Impact of Ge clustering on the thermal conductivity of SiGe nanowires: Atomistic simulation study,” Phys. Chem. Chem. Phys. 25, 6263 (2023).
M. Isaiev, Y. Mankovska, V. Kuryliuk, and D. Lacroix, “Thermal transport properties of nanoporous silicon with significant specific surface area,” Appl. Phys. Lett. 122, 172201 (2023).
D. Lacroix, M. I. Nkenfack, G. Pernot, and M. Isaiev. “Thermal properties of nanoporous materials, large scale modelling with the use of monte carlo phonon transport autocorrelation,” J. Appl. Phys. 134, 025101 (2023).
S. E. Lewis, J. R. DeBoer, J. L. Gole, and P. J. Hesketh, “Sensitive, selective, and analytical improvements to a porous silicon gas sensor,” Sens. Actuators B: Chem. 110, 54 (2005).
D. Ma, D. H. Kim, M. Yu, Y. E. Cho, and H. Kim, “Porous silicon layer overlaid graphite anode materials for fast-charging of lithium-ion batteries,” J. Power Sources 645, 237199 (2025).
T. Dzhafarov and A. Bayramov, “Porous silicon and solar cells,” in Handbook of Porous Silicon, edited by L. Canham (Springer, Cham, 2017).
G. Müller, A. Friedberger, and K. Knese, Handbook of Silicon Based MEMS Materials and Technologies (William Andrew Publishing, 2010).
U. Bernini, S. Lettieri, P. Maddalena, R. Vitiello, and G. Di Francia, “Evaluation of the thermal conductivity of porous silicon layers by an optical pump-probe method,” J. Phys.: Condens. Matter. 13, 1141 (2001).
P. Sharma, J. Dell, G. Parish, and A. Keating, “Engineering 1/f noise in porous silicon thin films for thermal sensing applications,” Microporous Mesoporous Mater. 324, 111302 (2021).
N. Van Toan, Y. Li, T. T. K. Tuoi, N. S. Sabran, J. H. Kiat, I. Voiculescu, and T. Ono, “Thermoelectric generator using nanoporous silicon formed by metal-assisted chemical etching method,” Energy Convers. Manag. 323, 119268 (2025).
J. Fang and L. Pilon, “Scaling laws for thermal conductivity of crystalline nanoporous silicon based on molecular dynamics simulations,” J. Appl. Phys. 110, 064305 (2011).
Y. He and G. Galli, “Microscopic origin of the reduced thermal conductivity of nanoporous Si,” Phys. Rev. Lett. 108, 215901 (2012).
J. Fang and L. Pilon, “Tuning thermal conductivity of nanoporous crystalline silicon by surface passivation: A molecular dynamics study,” Appl. Phys. Lett. 101, 011909 (2012).
M. Isaiev, N. Kyrychenko, V. Kuryliuk, and D. Lacroix, “Features of phonon scattering by a spherical pore: Molecular dynamics insight,” Appl. Phys. Lett. 124, 142202 (2024).
R. Jacobs, D. Morgan, S. Attarian ., “A practical guide to machine learning interatomic potentials – statusand future,” Curr. Opin. Solid State Mater. Sci. 35, 101214 (2025).
G. Wang, C. Wang, X. Zhang, Z. Li, J. Zhou, and Z. Sun, “Machine learning interatomic potential: Bridge the gap between small-scale models and realistic device-scale simulations,” Science 27, 109673 (2024).
H.-G. Nguyen, T.-D. Le, H.-G. Nguyen, and T.-H. Fang, “Mechanical properties of AlCoCrCuFeNi high-entropy alloys using molecular dynamics and machine learning,” Mater. Sci. Eng. R 160, 100833 (2024).
O. Elgack, B. Almomani, J. Syarif, M. Elazab, M. Irshaid, and M. Al-Shabi, “Molecular dynamics simulation and machine learning-based analysis for predicting tensile properties of high-entropy FeNiCrCoCu alloys,” J. Mater. Res. Technol. 25, 5575 2023.
Y. Luo, M. Li, H. Yuan ., “Predicting lattice thermal conductivity via machine learning: A mini review,” npj Comput. Mater. 9, 4 (2023).
L. Guo, Y. Liu, L. Yang, and B. Cao, “Lattice dynamics modeling of thermal transport in solids using machine-learned atomic cluster expansion potentials: A tutorial,” J. Appl. Phys. 137, 081101 (2025).
X. Liu, F. Liang, S. Liu, G. Pan, J. Ding, and J. Lu, “NaCl-KCl-CaCl2 molten salts for high temperature heat storage: Experimental and deep learning molecular dynamics simulation study,” Sol. Energy Mater. Sol. Cells 280, 113275 (2025).
Y. Du, P. Ying, and J. Zhang, “Prediction and optimization of the thermal transport in hybrid carbon-boron nitride honeycombs using machine learning,” Carbon 184, 492 (2021).
P. R. Chowdhury and X. Ruan, “Unexpected thermal conductivity enhancement in aperiodic superlattices discovered using active machine learning,” npj Comput Mater. 8, 12 (2022).
J. Wan, J.-W. Jiang, and H. S. Park, “Machine learning-based design of porous graphene with low thermal conductivity,” Carbon 157, 262 (2020).
A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown, P. S. Crozier, P. J. in ‘t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton, “LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales,” Comp. Phys. Comm. 271, 10817 (2022).
S. Moser, C. Kenel, L. A. Wehner, R. Spolenak, and D. C. Dunand, “3D ink-printed, sintered porous silicon scaffolds for battery applications,” J. Power Sour. 507, 230298 (2021).
Z. Liu, X. Yuan, S. Zhang, J. Wang, Q. Huang, N. Yu, Y. Zhu, L. Fu, F. Wang, Y. Chen, and Y. Wu, “Three-dimensional ordered porous electrode materials for electrochemical energy storage,” NPG Asia Mater. 11, 12 (2019).
J. Ordonez-Miranda and J. J. Alvarado-Gil, “Effect of the pore shape on the thermal conductivity of porous media,” J. Mater. Sci. 47, 6733 (2012).
H. Babaei, A. J. H. McGaughey, and C. E. Wilmer, “Effect of pore size and shape on the thermal conductivity of metal-organic frameworks,” Chem. Sci. 8, 583 (2017).
P. Ferrando-Villalba, L. D’Ortenzi, G. G. Dalkiranis . “Impact of pore anisotropy on the thermal conductivity of porous Si nanowires,” Sci. Rep. 8, 12796 (2018).
K. Valalaki and A. G. Nassiopoulou, “Thermal conductivity of highly porous Si in the temperature range 4.2 to 20 K,” Nanoscale Res. Lett. 9, 318 (2014).
D. Angelis, F. Sofos, and T. E. Karakasidis, “Artificial intelligence in physical sciences: Symbolic regression trends and perspectives,” Arch. Comput. Methods Eng. 30, 3845 (2023).
F. Sofos, C. Dritselis, S. Misdanitis, T. Karakasidis, and D. Valougeorgis, “Computation of flow rates in rarefied gas flow through circular tubes via machine learning techniques,” Microfluid. Nanofluidics 27, 85 (2023).
M. Cranmer, Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. arXiv:2305.01582.
B.-J. Lee, “A modified embedded atom method interatomic potential for silicon,” Calphad. 31, 95 (2007).
J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B 39, 5566 (1989).
J. F. Justo, M. Z. Bazant, E. Kaxiras, V. V. Bulatov, and S. Yip, “Interatomic potential for silicon defects and disordered phases,” Phys. Rev. B 58, 2539 (1998).
F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B 31, 5262 (1985).
Y. Lee and G. S. Hwang, “Force-matching-based parameterization of the stillinger–weber potential for thermal conduction in silicon,” Phys. Rev. B 85, 125204 (2012).
A. P. Thompson, L. P. Swiler, C. R. Trott, S. M. Foiles, and G. J. Tucker, “Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials,” J. Comput. Phys. 285, 316 (2015).
A. V. Inyushkin, “Thermal conductivity of group IV elemental semiconductors,” J. Appl. Phys. 134, 221102 (2023).
B. Graczykowski, A. El Sachat, J. S. Reparaz et al, “Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures,” Nat. Commun. 8, 415 (2017).
D. Kojda, T. Hofmann, N. Gostkowska-Lekner, and K. Habicht, “Characterization and modeling of the temperature-dependent thermal conductivity in sintered porous silicon-aluminum nanomaterials,” Nano Res. 15, 5663 (2022).
S. Lettieri, U. Bernini, E. Massera, and P. Maddalena, “Optical investigations on thermal conductivity in n- and p-type porous silicon,” Phys. Status Solidi C 2, 3414 (2005).
G. Geseley, J. Linsmeieryx, V. Drachy, J. Frickey, and R. Arens-Fischer, “Temperature-dependent thermal conductivity of porous silicon,” Phys. D: Appl. Phys. 30, 2911 (1997).
S. Erfantalab, G. Parish, and A. Keating, “Determination of thermal conductivity, thermal diffusivity and specific heat capacity of porous silicon thin films using the 3ω method,” Int. J. Heat Mass Transf. 184, 122346 (2022).
Z. Fang, M. Hu, W. Zhang, X. Zhang, and H. Yang, “Thermal conductivity and nanoindentation hardness of as-prepared and oxidized porous silicon layers,” J. Mater. Sci.: Mater. Electron. 19, 1128 (2008).
R. Srinivasan, M. Jayachandran, and K. Ramachandran, “Photoacoustic studies on optical and thermal properties of p-type and n-type nanostructured porous silicon for (100) and (111) orientations,” Cryst. Res. Technol. 42, 266 (2007).