Classical and fractal models of chalcogenide glasses viscoelasticity

Автор(и)

DOI (Low Temperature Physics):


https://doi.org/10.1063/10.0042158

Ключові слова:

chalcogenide glasses, viscoelasticity, mechanical models, fractional order derivatives

Анотація

The creep and mechanical stress relaxation in As–Se glasses at various temperatures were investigated experimentally, and the behavior of parameters that describe elastic properties and internal friction was analyzed within the framework of the classical standard models of solids and of the Burgers model. The theoretical basis for the description of viscoelastic phenomena in solids, in particular glassy materials, using the fractal Scott–Blair element is considered, and a mixed model incorporating of the Maxwell and Scott–Blair elements was proposed. A comparison of the correspondence between the experimental results and the parameters of the Burgers model and the mixed classical-fractal model was carried out. It was shown that the proposed mixed model takes into account the elastic and residual plastic deformation, as well as the power law dependence of the viscoelasticity.

Посилання

Y. Hiki, J. Non-Crystalline Solids 357, 2357 (2011). https://doi.org/10.1016/j.jnoncrysol.2010.08.016

R. S. Lakes, Rev. Sci. Instrum. 75, 797 (2004). https://doi.org/10.1063/1.1651639

V. I. Mikla, A. A. Horvat, A. E. Krishtofory, and V. V. Minkovich, J. Optoelectron. Adv. Mater. 13, 1 (2011).

J. Perez, B. Duperray, and D. Lefevre, J. Non. Cryst. Solids 44, 113 (1981). https://doi.org/10.1016/0022-3093(81)90137-X

R. Böhmer and C. A. Angell, Phys. Rev. B 48, 5857 (1993). https://doi.org/10.1103/PhysRevB.48.5857

P. Kelly, Solid Mechanics Part I: An Introduction to Solid Mechanics, Chapter Viscoelasticity (University of Auckland, 2013).

Aleksandar S. Okuka and Dušan Zorica, Appl. Mathem. Modell. 77, 1894 (2020). https://doi.org/10.1016/j.apm.2019.09.035

Yingying Zhang, Shanshan Xu, Qilin Zhang, and Yi Zhou, Adv. Mater. Sci. Eng. 7, 319473 (2015). https://doi.org/10.1155/2015/319473

G. W. Scott Blair, J. Sci. Instrum. 21, 80 (1944).
https://doi.org/10.1088/0950-7671/21/5/302

R. L. Bagley and P. J. Torvik, AIAA J. 21, 741 (1983). https://doi.org/10.2514/3.8142

R. L. Bagley and P. J. Torvik, J. Rheol. 27, 201 (1983). https://doi.org/10.1122/1.549724

S. M. Cai, Y. M. Chen, and Q. X. Liu, Appl. Mathem. Modell. 132, 645 (2024). https://doi.org/10.1016/j.apm.2024.05.008

W. Cai, P. Wang, and Y. Zhang, Mech. Adv. Mater. Struct. 31, 4069 (2023). https://doi.org/10.1080/15376494.2023.2190741

José Geraldo Telles Ribeiro, Jaime Tupiassú Pinho de Castro, and Marco Antonio Meggiolaro, J. Mater. Res. Technol. 12, 1184 (2021). https://doi.org/10.1016/j.jmrt.2021.03.007

A. Bonfanti, J. L. Kaplan, G. Charras, and A. Kabla, Soft Matter 16, 6002 (2020). https://doi.org/10.1039/D0SM00354A

S. Mashayekhi, M. Y. Hussaini, and O. William, J. Mech. Phys. Solids 128, 137 (2019). https://doi.org/10.1016/j.jmps.2019.04.005

R. C. Koeller, J. Appl. Mech. 51, 229 (1984). https://doi.org/10.1115/1.3167616

Downloads

Опубліковано

2026-01-04

Як цитувати

(1)
A. A. Horvat, A. A. Molnar, and V. V. Minkovych, Classical and fractal models of chalcogenide glasses viscoelasticity , Low Temp. Phys. 52, (2026) [Fiz. Nyzk. Temp. 52, 22–27, (2026)] DOI: https://doi.org/10.1063/10.0042158.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.